DEPARTMENT OF PHYSICS

S.No.	Course Code	Course Title	Course Outcomes (CO)
1.	PS120	Paper I Mechanics and Ocillations	On completion of this course, the students will be able to: CO1: Develop understanding on the concept of scalar, vector fields, Gradient, Divergence and curl of vector fields. CO2: Able to apply the Gauss, stokes and Greens theorems in related problems. CO3: Identify and apply the laws of mechanics along with the necessary mathematics for solving numerically. CO4: Describe Newton's laws of motion and conservation principles. CO5: Able to articulate and describe relative motion, Inertial and non-inertial reference frames. CO4: Understand the Mechanics of rigid bodies, concept of Gyroscope and establish the rotational Kinematic relations. CO5: Explain the Gravitational potentials and fields, central forces and Kepler's laws. CO6: Differentiate between Galilean and Lorentz transformations. CO7: Describe the Michelson-Morley Experiment, Postulates of special theory of relativity. CO8: Understand and derive the Kepler's laws. CO9: Understand physical characteristics of SHM and obtaining solution of the oscillator using differential equations and Lissajous figures CO10: Calculate logarithmic decrement, relaxation factor and quality factor of a harmonic oscillator.

	70000		
2.	PS220	Paper-II	On completion of this course, the
		Thermal	students will be able to:
		Physics	CO1: Recall the laws of gasses and
			Kinetic theory of gasses.
			CO2 : Analyse the different transport
			Phenomena
			CO3: Understand the thermodynamic
			laws and entropy
			CO4: Derive the equations of
			thermodynamic potentials and
			establishes the relation among them.
			CO5 : Explain the Joule-Kelvin effect and
			methods of production of low
			temperature.
			C06: Distinguish between adiabatic and
			Joule- Kelvin effect.
			CO7: Understand the Planks law, Wein's
			law and Reyleigh' Jeans Law and Stefans
			law and establishes relation among
			them.
			CO8 : Describe the experimental setups
			of optical pyrometers.
			CO9: Understand the concepts of phase
			space, Ensembles and postulates of
			statistical mechanics.
			CO10: Differentiate among Maxwell's-
			Boltzmann, Bose-Einstein, Fermi-Dirac
			distribution laws
3.	PS320	Paper – III	At the end of the course the students will
		Electromagnetic	be able to
		Theory	CO1: Recall the concepts of basics laws
		Theory	of electro statics and Magneto statics.
			CO2: Derive the Gauss laws and applies
			the Gauss law in Physics problems.
			CO3: Able to apply the Ampere's law in
			1 9 /
			currents.
			CO4: Understand the working principle
			of Ballistic Galvanometer.
			CO5: Explain the Faraday's, Lenz's laws
			and concept of self, mutual Inductions
			and continuity Equation.
			CO6: Derive the Maxwell's equations in
I			Vacuum and dielectric medium.
			CO7: Draws the current and voltage
			CO7: Draws the current and voltage response of charging and discharging of
			response of charging and discharging of
			response of charging and discharging of

			CO8: Understand the concepts of passive, active elements, power series and network models. CO9: Explain the different network theorems and importance.
4.	PS420	Paper - IV - Waves and Optics	On the completion of this course, the students will be able to; CO1: Understand the fundamental of waves and transverse and longitudinal vibrations of bars CO2: Understand the properties and applications of light like reflection, refraction, interference, diffraction etc CO3: Apply the principles of wave motion and superposition to explain the Physics of polarization, interference and diffraction. CO4: Understand the applications of interference in design and working of interference in design and working of interferometers. CO5: In the laboratory course, student will gain hands-on experience of using various optical instruments and making finer measurements of wavelength of light using Newton Rings experiment, Fresnel Biprism etc. Resolving power of optical equipment can be learnt firsthand. CO6: Distinguish between Fresnel and Fraunhofer diffraction. CO7:Explain the different methods of polarization. CO8:Describe the experimental setup and working principle of Babinet's compensator.
5.	P\$520	DSE-VA Modern Physics	The students will be able to CO1: Recall the limitations of Bohr's atomic model and understand the Concepts of Atomic spectra, types of molecular spectra, Vector atom model Stern-Gerlach Experiment and quantum numbers associated with coupling schemes.

			CO2: Distinguish among Zeeman,
			Paschen-Back and stark effect and
			understand experimental arrangement
			of Raman Spectra and its applications.
			CO3: Understand the central concepts of
			quantum mechanics: wave functions,
			momentum and energy operator, the
			Schrodinger equation, time dependent
			and time independent cases, probability
			density and the normalization
			techniques, basic postulates of quantum
			mechanics.
			CO4: Understand the De-Broglie
			Hypothesis and Heisenberg Uncertainty
			"-
			Principle.
			CO5: Understanding the properties of
			nuclei like density, size, binding energy, nuclear forces and structure of atomic
			nucleus, liquid drop model and nuclear
			shell model and mass formula.
			CO6: Ability to calculate the decay rates
			and lifetime of radioactive decays like
			alpha, beta, gamma decay, Neutrinos
			and its properties and role in theory of
			beta decay.
			CO7: Explain different types of particle
			detectors.
			CO8: Differentiate between Crystalline
			and amorphous substances, structures
			and understand the concepts of lattice,
			unit cell, miller indices, and diffraction of
			X-rays by crystalline materials.
			CO9: Analyze the simple crystal
			structures.
			CO10 : Explain the characteristics of
			crystals with different bondings.
6.	PS 521	DSE-VB:	On completion of this course, the
		Computational	students will be able to:
		Physics	CO1: Understand the different concepts
			of Programming in 'C'.
			CO2: Analyse the different numerical
			methods.
			CO3: Able to give numerical solutions of
			ordinary differential equations.
			CO4: Explain the different Algorithms
			and Monte Carlo simulations.
	•	•	•

7.	PS620	DSE-VIA	After completion of the course, the
1.	15020	Electronics	students will be able to;
		Dioctionios	CO1: Understand the energy bands in
			solids and type of diodes.
			CO2: Understand different types of
			transistors, amplifier and oscillators.
			_
			CO3: Explain special devises i.e FET, UJT, SCR, etc
			, , ,
			CO4: Applies the logic gates in simple electronic circuits.
			CO5: Understand the binary number
			system, hexa decimal and their
	D0601	DSE-VIB	conversion.
8.	PS621		After the completion of this course, the
		Applied optics	learner will be able to:
			CO1: Classifies the different types of
			laser systems.
			CO2: Understand the basic principles
			and applications of holography.
			CO3: Explain the Fourier and non-linear
			optics
			CO4: Understand the different types of
	7001	0701	optical fibres and their structures.
9.	PS321	SEC1:	On completion of this course, the
		Experimental	students will be able to:
		methods and	CO1: Understand the different
		error analysis	measurement methods, least count,
			accuracy and types of errors. CO2: Understand the errors of
			computation and minimising methods.
			CO3: Understand the mean, mode and
			standard deviation.
			CO4: Explain the Binomial, passion,
10.	PS421	SEC2:	normal distributions and chi square test.
10.	F3441		After completion of the course, the
		Digital Electronics	students will be able to;
		Electronics	CO1: Distinguish between intrinsic and extrinsic semi-conductors, P-type and
			. 51
			N-type semiconductors. CO2: Able to apply rectifiers with and
			without filters in electronic circuits.
			CO3: Analyses different types amplifiers.
			CO4: Explain the construction and
			_
			characteristics of photo diode, Photo
			transistors, LED, LCD, SCR and UJT.
			CO5 : Understand the concept of
1	I		feedback oscillators and digital systems.